
1

Best practices for writing and running mix-
mode MPI and OpenMP codes on the Cray XE6

LBNL NERSC
Nicholas J Wright, Karl Fuerlinger, John Shalf

LBNL Computing Research Division
Hongzhang Shan, Tony Drummond, Andrew Canning

PPPL
Stephane Ethier

Cray Inc.
Nathan Wichmann, Marcus Wagner,

Sarah Anderson, Ryan Olsen, Mike Aamodt

2

The Multicore era
•  Moore’s Law continues

•  Traditional sources of
performance improvement
ending

–  Old Trend: double clock frequency
every 18th months

–  New Trend: Double # cores every
18 months

•  Power limits drive a number of
Broader Technology Trends

–  Number Cores
–  Memory Capacity per core flat or
–  Memory Bandwidth per FLOP
–  Network Bandwidth per FLOP

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

3

The Multicore era
•  Moore’s Law continues

•  Traditional sources of
performance improvement
ending

–  Old Trend: double clock frequency
every 18th months

–  New Trend: Double # cores every
18 months P. Kogge

•  Implication for NERSC users
–  3x increase in system performance with no per-core performance improvement (hopper)
–  12x more cores in NERSC-6 (hopper) than NERSC-5 (franklin) (2 cores to 24 cores)
–  Same or lower memory capacity per core on compute nodes

•  Flat MPI-only model for parallelism will not scale
–  Need to transition to new durable model that can sustain massive growth in parallelism
–  Hopper changes are first step in a long-term technology trend
–  NERSC needs to take proactive role in guiding transition of user community

4

Long-Term Concerns for NERSC Users

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Top500

COTS/MPP + MPI

COTS/MPP + MPI (+ OpenMP)

GPU CUDA/OpenCL
Or Manycore BG/Q, R

Exascale + ???

Franklin (N5)
19 TF Sustained
101 TF Peak

Franklin (N5) +QC
36 TF Sustained
352 TF Peak

Hopper (N6)
>1 PF Peak

NERSC-7
10 PF Peak

NERSC-8
100 PF Peak

NERSC-9
1 EF Peak

P
ea

k
Te

ra
flo

p/
s

4

5

NERSC COE
•  Risks for NERSC and DOE User Community

–  Users will not be able to make effective user of hopper
–  Average job size will go down if users cannot scale
–  Users will be exposed to multiple-disruptive rewrites of their

code in effort to stay head of technology curve

•  As mitigation for this risk, NERSC created the Cray
Center of Excellence in cooperation with Cray Inc.
–  Characterize performance of NERSC codes in context of

emerging technology trends
–  Evaluate viable/candidate programming models to make

more effective use of future machines (hopper first)
–  Develop training materials to guide the user transition to

new programming model (map durable path to exascale)

6

NERSC COE: Project Plan

•  Phase 1: Prepare users for hopper
–  NERSC-6 application benchmarks provide representative

set of NERSC workload and broad cross-section of
algorithms

–  User hybrid OpenMP/MPI model because it is most mature
–  Analyze performance of hybrid applications
–  Work with USG to create training materials for hopper users

to disseminate results

•  Phase 2: Prepare users for next decade
–  Evaluate advanced programming models
–  Identify durable approach for programming on path to

exascale

7

NERSC-6 Applications Cover
Algorithm and Science Space

Science areas
Dense
linear

algebra

Sparse
linear

algebra

Spectral
Methods

(FFT)s

Particle
Methods

Structured
Grids

Unstructured
or AMR Grids

Accelerator
Science X X

IMPACT-T
X

IMPACT-T
X

IMPACT-T X

Astrophysics X X
MAESTRO X X X

MAESTRO
X

MAESTRO

Chemistry X
GAMESS X X X

Climate X
CAM

X
CAM X

Combustion
X

MAESTRO
X

AMR Elliptic

Fusion X X
X

GTC
X

GTC
X

Lattice Gauge X
MILC

X
MILC

X
MILC

X
MILC

Material Science X
PARATEC

X
PARATEC

X
X

PARATEC

8

OpenMP Hybrid Programming
Basics

9

Hybrid MPI-OpenMP Programming

Benefits
 + Less Memory usage
 + Focus on # nodes (which is not increasing as fast) instead of # cores
 + Larger messages, less time in MPI
 + Attack different levels of parallelism than possible with MPI

Potential Pitfalls
-  NUMA / Locality effects
-  Synchronization overhead
-  Inability to saturate network adaptor

Mitigations
-  User training
-  Code examples using real applications
-  Hopper system configuration changes
-  Feedback to Cray on compiler & system software development

10

What are the Basic Differences
Between MPI and OpenMP?

•  Program is a collection of processes.
•  Usually fixed at startup time

•  Single thread of control plus private
address space -- NO shared data.

•  Processes communicate by explicit send/
receive pairs

•  Coordination is implicit in every
communication event.

•  MPI is most important example.

K.Yelick, CS267 UCB

•  Program is a collection of threads.
•  Can be created dynamically.

•  Threads have private variables and
shared variables

•  Threads communicate implicitly by
writing and reading shared variables.
•  Threads coordinate by synchronizing

on shared variables
•  OpenMP is an example

Shared Address Space Model

Message Passing Model
Interconnect

11

Understanding Hybrid
MPI/OPENMP Model

T(NMPI,NOMP) = t(NMPI) + t(NOMP) + t(NMPI,NOMP) + tserial

count=G/NMPI

 Do i=1,count

count=G/NOMP
!$omp do private (i)
Do i=1,G

count=G/(NOMP*NMPI)
!$omp do private (i)
Do i=1,G/NMPI

count=G
Do i=1,G

Serial

Serial

Parallel

Serial

Parallel

Serial

MPI

12

Important to Set Expectations

•  OpenMP + MPI unlikely to be faster than pure
MPI - but it will almost certainly use less
memory

•  Very important to consider your overall
performance
–  individual kernels maybe slower with OpenMP but the code

overall maybe faster

•  Sometimes it maybe better to leave cores idle
–  #1 Memory Capacity
–  #2 Memory Bandwidth
–  #3 Network Bandwidth
–  #4 Flops…….

13

Hopper Node Topology
Understanding NUMA Effects

•  Heterogeneous Memory access between dies
•  “First touch” assignment of pages to memory.

P0

P1

P2

P3

Memory
DRAM

Memory
DRAM

Memory
DRAM

Memory
DRAM

2xDDR1333 channel
21.328 GB/s

3.2GHz x8 lane HT
6.4 GB/s bidirectional

3.2GHz x16 lane HT
12.8 GB/s bidirectional

•  Locality is key (just as per Exascale Report)
•  Only indirect locality control with OpenMP

14

Hopper Node Topology
Understanding NUMA Effects

•  Heterogeneous Memory access between dies
•  “First touch” assignment of pages to memory.

P0

P1

P2

P3

Memory
DRAM

Memory
DRAM

Memory
DRAM

Memory
DRAM

2xDDR1333 channel
21.328 GB/s

3.2GHz x8 lane HT
6.4 GB/s bidirectional

3.2GHz x16 lane HT
12.8 GB/s bidirectional

•  Locality is key (just as per Exascale Report)
•  Only indirect locality control with OpenMP

21GB/s 21GB/s

21GB/s 21GB/s

12.8GB/s

12.8GB/s

19
.2

G
B

/s

19
.2

G
B

/s

15

Hopper Node Topology
Understanding NUMA Effects

•  Heterogeneous Memory access between dies
•  “First touch” assignment of pages to memory.

P0

P1

P2

P3

Memory
DRAM

Memory
DRAM

Memory
DRAM

Memory
DRAM

2xDDR1333 channel
21.328 GB/s

3.2GHz x8 lane HT
6.4 GB/s bidirectional

3.2GHz x16 lane HT
12.8 GB/s bidirectional

•  Locality is key (just as per Exascale Report)
•  Only indirect locality control with OpenMP

21GB/s 21GB/s

21GB/s 21GB/s

12.8GB/s

12.8GB/s

19
.2

G
B

/s

19
.2

G
B

/s

Launch threads on “NUMA Nodes” (see COE talk)

16

Stream Benchmark

Double a[N],b[N],c[N};
…….
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;
 }
#pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j]=b[j]+d*c[j];
}
…

17

Stream Benchmark

Double a[N],b[N],c[N};
…….
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;
 }
#pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j]=b[j]+d*c[j];
}
…

18

Stream NUMA effects - Hopper

19

20

Studying the N6 Application
Benchmarks

21

NERSC-6 Benchmark Codes

•  Gyrokinetic Toroidal Code (GTC)
•  Parallel Total Energy Code (PARATEC)
•  Finite Volume Community Atmosphere

Model (fvCAM)

22

NERSC-6 Applications Cover
Algorithm and Science Space

Science areas
Dense
linear

algebra

Sparse
linear

algebra

Spectral
Methods

(FFT)s

Particle
Methods

Structured
Grids

Unstructured
or AMR Grids

Accelerator
Science X X

IMPACT-T
X

IMPACT-T
X

IMPACT-T X

Astrophysics X X
MAESTRO X X X

MAESTRO
X

MAESTRO

Chemistry X
GAMESS X X X

Climate X
CAM

X
CAM X

Combustion
X

MAESTRO
X

AMR Elliptic

Fusion X X
X

GTC
X

GTC
X

Lattice Gauge X
MILC

X
MILC

X
MILC

X
MILC

Material Science X
PARATEC

X
PARATEC

X
X

PARATEC

23

Breaking Down the Runtime -
Tools

•  IPM – Integrated Performance Monitoring
http://ipm-hpc.sourceforge.net
–  Time in MPI, Messages sizes, Communication

Patterns
–  Simple Interface to PAPI
–  OpenMP profiler module added

•  OMPP – OpenMP Profiler
 http://www.cs.utk.edu/~karl/ompp.html

–  Time Spent in OpenMP per region, Load
imbalance, Overhead

–  Also Interfaces to PAPI

24

25

Gyrokinetic Toroidal Code (GTC)

•  3D Particle-in-cell (PIC)
•  Used for simulations of non-linear

gyrokinetic plasma microturbulence
•  Paralleised with OpenMP and MPI.
•  ~15K lines of Fortran 90
•  OpenMP version 56 parallel regions/loops

(almost all)
•  10 loops required different implementation

for OpenMP version (~250 lines)

26

•  Popular method for numerical simulation of many-
body systems.

•  Often implemented from first principles without the
need of an approximate equation of state

•  Applications: plasma modeling, Astrophysics and
modeling of debris fields from explosions

•  1/3 of all CPU hours at NERSC

Particle-In-Cell (PIC) simulations

Grid/mesh overlaying particles to
measure charge and current densities Generic PIC Schematic

Move particles
Fi vi xi (xi, vi)

(E,B)j

Weight particles
to field

(xi ,vi) (ρ,J)j

Field solve
(ρ,J)j (E,B)j

Weight field
to particles
(E,B)jFj

Δt

“Push”

“Solve”

“Scatter” “Gather”

27

SC10 GTC Autotuning

mgrid = total number of points

•  GTC PIC Steps
–  Scatter: deposit charges

on the grid (interpolate to
nearest neighbor)

–  Solve Poisson
equation: (local relaxation
steps)

–  Gather: forces on each
particle from potential

–  Push: move particles
–  repeat

28

Important Routines in GTC

poisson
charge
smooth
pusher
field
shift
load

Setup
#

Load
#

Charge#
#

Poisson #
#

Field #
#

Push #
#

Shift#
#

Charge#
#

Poisson #
#

Field #

Poisson – charge distribution Electric field
Charge – deposits charge on Grid
Smooth – smoothes charge on grid
Pusher – Moves the Ions/Electrons
Field – Calculates Forces due to Electric
field
Shifter – Exchanges between MPI tasks

29

GTC – Hopper – Large Test Case

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

1 2 3 6 12 24

1536 768 512 256 128 64

To
ta

l M
em

or
y

(G
B

)

Ti
m

e
(s

)

OpenMP Threads / MPI tasks

OpenMP time MPI time Serial time Total Memory / GB

G
O
O
D

30

Small Test Case – 96 cores –
Breakdown

0

20

40

60

80

100

120

140

160

180

200

1	 2	 3	 4	 6	 12	

96	 48	 32	 24	 16	 8	

tim
e

/ s

OPENMP threads / MPI tasks

poisson

charge

smooth

pusher

field

shift

31

Small Test Case – 96 cores –
Breakdown

0

20

40

60

80

100

120

140

160

180

200

1	 2	 3	 4	 6	 12	

96	 48	 32	 24	 16	 8	

tim
e

/ s

OPENMP threads / MPI tasks

poisson

charge

smooth

pusher

field

shift

32

Small Test Case – 96 cores –
Breakdown

0

20

40

60

80

100

120

140

160

180

200

1	 2	 3	 4	 6	 12	

96	 48	 32	 24	 16	 8	

tim
e

/ s

OPENMP threads / MPI tasks

poisson

charge

smooth

pusher

field

shift

33

Small Case - Performance
Breakdown

0

50

100

150

200

250

300

350

400

450

500

0	 2	 4	 6	 8	 10	 12	 14	

tim
e

/ s

Number OPENMP threads

wallt

MPI time

Poisson

Wallt-MPI-Poisson

34

GTC: Communication Analysis

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

Ti
m

e
/s

Number OPENMP threads per MPI task

Sendrecv time

Allreduce time

0.E+00
1.E+06
2.E+06
3.E+06
4.E+06

0 2 4 6 8 10 12

Av
er

ag
e

M
es

sa
ge

 S
iz

e
/

B
yt

es

Number OPENMP threads per MPI task

Sendrecv Aver mess
Allreduce Average Message

35

Strong Scaling

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

pusher
shift
charge
poisson
smooth
total

36

Strong Scaling cont.

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

total
OMP time
MPI time
Serial

37

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

total
OMP time
R00025 poisson.f90 (92-100)
R00015 chargei.F90 (29-74)
R00053 pushi.f90 (64-111)
R00054 pushi.f90 (123-236)
R00016 chargei.F90 (86-161)

Strong Scaling cont.

38

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

total
OMP time
R00025 poisson.f90 (92-100)
R00015 chargei.F90 (29-74)
R00053 pushi.f90 (64-111)
R00054 pushi.f90 (123-236)
R00016 chargei.F90 (86-161)

Strong Scaling cont.

!$omp parallel do private(i,j)
 do i=1,mi

 dnitmp(i,threadid) =
…
!$omp critical
 do k=1,nthreads

 do j=1,mgrid
 dni(j) = dni(j)+dnitmp(j,k)

.

39

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

total
OMP time
R00025 poisson.f90 (92-100)
R00015 chargei.F90 (29-74)
R00053 pushi.f90 (64-111)
R00054 pushi.f90 (123-236)
R00016 chargei.F90 (86-161)

Strong Scaling cont.

40

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

total
OMP time
R00025 poisson.f90 (92-100)
R00015 chargei.F90 (29-74)
R00053 pushi.f90 (64-111)
R00054 pushi.f90 (123-236)
R00016 chargei.F90 (86-161)

Strong Scaling cont.

!$omp parallel do private(i,j)
 do i=1,mgrid
 do j=1,nindex(i,k)
 ptilde(i)=ptilde(i)+ring(j,i,k)*phitmp(indexp(j,i,k))
 ..

41

PARATEC - First Principles
Electronic Structure Calculations

•  First Principles: Full quantum mechanical treatment
of electrons

•  Gives accurate results for Structural and Electronic
Properties of Materials, Molecules, Nanostructures

•  Computationally very expensive (eg. grid of > 1
million points for each electron)

•  Density Functional Theory (DFT) Plane Wave Based
(Fourier) methods probably largest user of
Supercomputer cycles in the world.

•  ~13% total NERSC workload including single
“biggest” code VASP

•  PARAllel Total Energy Code (PARATEC) proxy in the
NERSC6 benchmark suite

42

ab initio Density Functional
Theory (Kohn 98 Nobel Prize)

Kohn Sham Equation (65): The many body ground
state problem can be mapped onto a single particle
problem with the same electron density and a
different effective potential (cubic scaling).	

Use Local Density Approximation
(LDA) for (good Si,C)

Many Body Schrodinger Equation (exponential scaling)	

43

Load Balancing & Parallel Data Layout

•  Wavefunctions stored as spheres of points (100-1000s spheres for 100s atoms) 	

•  Data intensive parts (BLAS) proportional to number of Fourier components 	

•  Pseudopotential calculation, Orthogonalization scales as N3 (atom system) 	

•  FFT part scales as N2logN 	

FFT

 Data distribution: load balancing constraints (Fourier Space):	

•  each processor should have same number of Fourier coefficients (N3 calcs.)	

•  each processor should have complete columns of Fourier coefficients (3d FFT)	

Give out sets of columns of data to each processor

44

Basic algorithm & Profile of
Paratec

•  Orthogonalization – ZGEMM
–  N3

•  FFT
– N ln N

•  At small concurrencies ZGEMM
dominates at large FFT

45

What OpenMP can do for
Paratec?

•  ZGEMM very amenable to threading

•  FFT also
– Can thread FFT library calls themselves
– Can ‘package’ individual FFT’s so that

messages are combined -> more efficient
communication

0
0.2
0.4
0.6
0.8

1
1.2

1 2 4 6 12

Pa
ra

lle
l E

ffi
ci

en
cy

Number of Threads

46

PARATEC – Hopper

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

0

500

1000

1500

2000

2500

3000

1 2 3 6 12 24 1 2 3 6 12 24 1 2 3 6 12 24

192 96 64 32 16 8 384 192 128 64 32 16 768 384 256 128 64 32

To
ta

l M
em

or
y

(G
B

)

Ti
m

e
(s

)

OpenMP threads / MPI tasks

FFT "ZGEMM" Total Memory (GB)

G
O
O
D

47

Paratec MPI+OpenMP Performance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6 12

768 384 256 128 64

Ti
m

e
/ s

OpenMP threads / MPI tasks

FFT "DGEMM" MPI

G
O
O
D

48

Parallel “ZGEMM”

0

200

400

600

800

1000

1200

1400

1 2 3 6 12

768 384 256 128 64

Ti
m

e
/ s

OpenMP threads / MPI tasks

Computation Communication

49

FFT Breakdown

0

200

400

600

800

1000

1200

1400

1600

1 2 3 6 12

768 384 256 128 64

Ti
m

e
/ s

OpenMP threads / MPI tasks

Computation Communication

50

Finite Volume Community
Atmospheric Model- fvCAM

•  Dynamics and physics use separate decompositions
–  physics utilizes a 2D longitude/latitude decomposition
–  dynamics utilizes multiple decompositions

•  FV dynamics 2D block latitude/vertical and 2D
block longitude/latitude

•  Decompositions are joined with transposes
•  Each subdomain is assigned to at most one MPI task
•  Additional parallelism via OpenMP ~500 OpenMP

directives over 72 .F90 files

51

fvCAM coordinate system

•  576x361x28 grid (Longitude x Latitude
x Vertical) (X Y Z)

•  Original problem definition - 240 MPI
tasks - 60(Y) x 4(Z,X) decomposition

•  Dynamics uses Lat-Vert and Lat-Long
•  Physics uses Lat-Long decomposition

InitializationTranspose Dynamics1 Transpose Dynamics2 Physics

52

fvCAM coordinate system

•  576x361x28 grid (Longitude x Latitude
x Vertical) (X Y Z)

•  Original problem definition - 240 MPI
tasks - 60(Y) x 4(Z,X) decomposition

•  Dynamics uses Lat-Vert and Lat-Long
•  Physics uses Lat-Long decomposition

InitializationTranspose Dynamics1 Transpose Dynamics2 Physics Dynamics

53

fvCAM - Hopper

G
O
O
D

0

10

20

30

40

50

60

70

0

100

200

300

400

500

600

700

800

900

1 2 3 6 12 24

240 120 80 40 20 10

To
ta

l M
em

or
y

(G
B

)

Ti
m

e
(s

)

OpenMP threads / MPI tasks

OpenMP time MPI time Serial time Memory (GB)

54

fvCAM MPI+OpenMP
Performance

0

100

200

300

400

500

600

700

1 2 3 6 12

240 120 80 40 20

Ti
m

e
/ s

OpenMP threads / MPI tasks

Dynamics Physics OpenMP MPI

G
O
O
D

55

fvCAM Physics

0

20

40

60

80

100

120

140

1 2 3 6 12 24

240 120 80 40 20 10

Ti
m

e
(s

)

OpenMP threads / MPI tasks

OpenMP MPI

56

CAM: Physics

•  Columnar processes (typically
parameterized) such as precipitation,
cloud physics, radiation, turbulent
mixing lead to large amounts of work
per thread and high efficiency

!$OMP PARALLEL DO PRIVATE (C)
do c=begchunk, endchunk
 call tphysbc (ztodt, pblht(1,c), tpert(1,c), snowhland

(1,c),phys_state(c),phys_tend(c), pbuf,fsds(1,c)....
 enddo

57

fvCAM - Dynamics

0

100

200

300

400

500

600

1 2 3 6 12 24

240 120 80 40 20 10

Ti
m

e
(s

)

OpenMP threads / MPI tasks

OpenMP MPI

58

Summary

•  OpenMP + MPI can be faster than pure MPI –
and is often comparable in performance

•  Beware NUMA !
– Don’t use >6 OpenMP threads unless absolutely

necessary or you can ‘first-touch’ perfectly
•  Beware !$OMP critical !

–  Unless you absolutely have to
•  Need Holistic view of your codes

performance bottlenecks
–  Adding more cores may not help –transpose

59

Advice to NERSC Users - Hopper

1.  Should I use OpenMP?
+  Need to save memory and have duplicated

structures across MPI tasks
+  Routine that parallelises with OPENMP only –

Poisson routine in GTC
-  Reduction operations – charge & push in GTC
-  Threads can be hard – locks, race conditions

2.  How hard is it to change my code?
•  Easier than serial to MPI
•  Easier than UPC/ CAF ?

3.  How do I know if it’s working or not?
–  IPM, OMPP, TAU, HPCToolkit, Craypat

60

Lessons for NERSC Users-
Longer Term

•  Are you going to tell me in 3 years that
I should have used CAF/UPC/Chapel ?

•  Uncertainty about Future Machine
model

–  GPU programming model – streaming
–  Many lightweight cores

•  OpenMP as it stands today is not
ideally suited to either model

–  Mend it? Broken ?? (GPU flavor of OMP)

61

62

Advanced OpenMP techniques

63

GTC - Shifte Routine

•  Which e- to move?
•  Pack e- to be moved
•  Communicate # e- to

move
•  Repack non-moving e-

•  Send/Recv e-

•  And again….

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e
tim

e

serial
openmp
mpi

64

Shifte Routine

•  Which e- to move? ✔
•  Pack e- to be moved ✗
•  Communicate # e- to

move ✗
•  Repack non-moving e-

✗

•  Send/Recv e- ✗

•  And again…..
0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e
tim

e

serial
openmp
mpi

65

OPENMP tasking

Executing Thread Encountering Task
 Region Adds Task to pool
#pragma omp task

Idle Threads Can
Execute Tasks in pool

66

Tasking - Results

0

0.2

0.4

0.6

0.8

1

1.2

old new

R
el

at
iv

e
tim

e

serial
openmp
mpi

Shifter ~30% faster !
GTC overall ~5% faster

